Understanding the Sample Code for the Chainer

Asked 2 months ago, Updated 2 months ago, 3 views

A program that learns MNIST image data in the sample code of the Chainer
https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py
I wrote my own program referring to , but I got an error a few seconds after I started learning.
The contents of the error are

 'int' object is not callable

This is happening in

self.trainer.run()

That's the part.All programs are listed below.

main.py

from__future_import print_function

import MultiLayerPerceptron

import chain
import chain.functions as F
import chain.links as L
from chain import training
from chain.training import extensions

GPU = 0
UNIT = 1000
O_UNIT = 10
BACTHSIZE= 100
EPOCH=20
OUT = 'result'
RESUME='"



defmain():

    setParams=MultiLayerPerceptron.SetParams (UNIT, O_UNIT, GPU, BACTHSIZE, EPOCH, OUT, RESUME)
    setParams.SetGPU()
    setParams.SetOptimizer()
    setParams.SetMNISTData()
    setParams.SetTrainer()
    setParams.SetExtension()
    setParams.RunTrainer()

if__name__=='__main__':
    main()

MultiLayerPerceptron.py

#-*-coding:utf-8-*-

import chain
import chain.links as L
import chain.functions as F
from chain import training
from chain.training import extensions


class MLP (chain.Chain):

    def_init__(self, n_units, n_out):
        super(MLP,self).__init__(
            l1 = L. Linear (None, n_units),
            l2 = L. Linear (None, n_units),
            l3 = L. Linear (None, n_out),
        )
    def__call__(self, x):
        h1 = F.relu(self.l1(x))
        h2 = F.relu(self.l2(h1))
        return self.l3(h2)

class SetParams:
    def__init__(self, unit, o_unit, gpu, batchSize, epoch, out, resume):
        self.model=L.Classifier (MLP(unit,o_unit))
        self.gpu=gpu
        self.batchSize =batchSize
        self.epoch=epoch
        self.out = out
        self.resume=resume
        self.optimiszer=None
        self.train=None
        self.test = None
        self.trainIter=None
        self.testIter=None
        self.trainer=None

    # GPU Configuration       
    def SetGPU(self):
        if self.gpu>=0:
            chain.cuda.get_device(self.gpu).use()
            self.model.to_gpu()
        print "Set GPU - OK"

    # Configuring Optimization Functions
    def SetOptimizer (self):
        self.optimizer=chainer.optimizers.Adam()
        self.optimizer.setup(self.model)
        print "Set Optimizer - OK"

    # Obtaining MNIST Image Data
    def SetMNISTData(self):
        self.train, self.test=chainer.datasets.get_mnist()#labeled dataset, 1D, data Type=float32, label Type=int32
        # Configuring Mini Batch
        self.trainIter=chain.iterators.SerialIterator(self.train,self.batchSize)#Repeated, reordered
        self.testIter=chainer.iterators.SerialIterator(self.test,self.batchSize,False,False)# No iteration, no reorder
        print "Set MNIST Image - OK"


    def SetTrainer (self):
        self.updater=training.StandardUpdater(self.trainIter, self.optimizer, device=self.gpu)
        self.trainer=training.trainer(self.updater,(self.epoch, 'epoch'), out=self.out)#****Unknown*****

    def SetExtension (self):
        self.trainer.extend(extensions.Evaluator(self.testIter, self.model, self.gpu))
        self.trainer.extend(extensions.dump_graph('main/loss'))
        self.trainer.extend(extensions.snapshot(), trigger=(self.epoch, 'epoch')))
        self.trainer.extend(extensions.LogReport())
        self.trainer.extend(extensions.PrintReport(
            ['epoch', 'main/loss', 'validaton/main/loss', 
             'main/accuracy', 'validation/main/accuracy', 'elapped_time'))
        self.trainer.extend(extensions.ProgressBar())
        print "Set Extension - OK"

    def RunTrainer (self):
        if self.resume:
            chain.serializers.load_npz(self.resume,self.trainer)
        self.trainer.run()

python chainer

2022-09-30 11:56

1 Answers

Invalid Evaluator argument.
If you take a variable argument, you must specify an argument name or you will pass an unintended variable.
self.trainer.extend(extensions.Evaluator(self.testIter, self.model, device=self.gpu))


2022-09-30 11:56

If you have any answers or tips


© 2022 OneMinuteCode. All rights reserved.